论文标题

深度学习和优化算法的主题,用于智能运输中的物联网应用

Topics in Deep Learning and Optimization Algorithms for IoT Applications in Smart Transportation

论文作者

Wu, Hongde

论文摘要

如今,物联网(IoT)已成为最重要的技术之一,可以在智能城市中进行各种连接和智能的应用程序。物联网设备的明智决策过程不仅取决于从其传感器中收集的大量数据,而且还取决于高级优化理论和新颖的机器学习技术,它们可以处理和分析特定网络结构中所收集的数据。因此,研究如何利用不同的优化算法和机器学习技术来提高系统性能,这实际上很重要。 作为物联网应用程序最重要的垂直域之一,Smart Transportation System通过使其对运输设施的访问更加容易地为公民提供现实世界中的信息和服务发挥了关键作用,因此它是本文中要探索的关键应用领域之一。 简而言之,该论文涵盖了与将数学优化和深度学习方法应用于IoT网络有关的三个关键主题。在第一个主题中,我们在IoT网络中使用基于ADMM的方法提出了一种最佳的传输频率管理方案,并引入了一种使用基于LSTM的体系结构来识别数据传输频率异常的机制。在第二个主题中,我们利用图形神经网络(GNN)进行共享自行车的需求预测。特别是,我们介绍了一种新颖的体系结构,即基于注意力的空间时间图卷积网络(AST-GCN),以提高现实世界数据集中的预测准确性。在最后一个主题中,我们考虑了一个高速公路交通网络方案,概率可能会发生频繁的车道改变行为。设计了基于GNN的特定异常检测器,以揭示由专用迁移率模拟器中收集的数据驱动的概率。

Nowadays, the Internet of Things (IoT) has become one of the most important technologies which enables a variety of connected and intelligent applications in smart cities. The smart decision making process of IoT devices not only relies on the large volume of data collected from their sensors, but also depends on advanced optimization theories and novel machine learning technologies which can process and analyse the collected data in specific network structure. Therefore, it becomes practically important to investigate how different optimization algorithms and machine learning techniques can be leveraged to improve system performance. As one of the most important vertical domains for IoT applications, smart transportation system has played a key role for providing real-world information and services to citizens by making their access to transport facilities easier and thus it is one of the key application areas to be explored in this thesis. In a nutshell, this thesis covers three key topics related to applying mathematical optimization and deep learning methods to IoT networks. In the first topic, we propose an optimal transmission frequency management scheme using decentralized ADMM-based method in a IoT network and introduce a mechanism to identify anomalies in data transmission frequency using an LSTM-based architecture. In the second topic, we leverage graph neural network (GNN) for demand prediction for shared bikes. In particular, we introduce a novel architecture, i.e., attention-based spatial temporal graph convolutional network (AST-GCN), to improve the prediction accuracy in real world datasets. In the last topic, we consider a highway traffic network scenario where frequent lane changing behaviors may occur with probability. A specific GNN based anomaly detector is devised to reveal such a probability driven by data collected in a dedicated mobility simulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源