论文标题
使用肿瘤位置的3D概率分布来改善小儿低级神经胶质瘤分子亚型鉴定的深度学习模型
Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumors Molecular Subtype Identification Using 3D Probability Distributions of Tumor Location
论文作者
论文摘要
背景和目的:小儿低级神经胶质瘤(PLGG)是儿童中最常见的脑肿瘤类型,PLGG的分子标记鉴定对于成功的治疗计划至关重要。 PLGG亚型识别的卷积神经网络(CNN)模型依赖于肿瘤分割。我们假设肿瘤分割是次优的,因此,我们建议使用MRI数据中的肿瘤位置概率增强CNN模型。 材料和方法:我们经过reb批准的回顾性研究包括143个BRAF融合和71 BRAF V600E突变肿瘤的MRI流体衰减恢复(FLAIR)序列。肿瘤分割(感兴趣的区域(ROI))由儿科神经放射学研究员提供,并由高级小儿神经放射科医生进行验证。在每个实验中,我们将数据随机分为开发,并以80/20的比率进行测试。我们合并了开发数据集中每个类别的3D二进制ROI蒙版,以得出肿瘤位置的概率密度函数(PDF),并开发了三个管道:基于位置的基于CNN,基于CNN和混合动力。 结果:我们重复了不同的模型初始化和数据拆分100次的实验,并计算了接收器操作特征曲线(AUC)下的面积。基于位置的分类器的AUC为77.90,95%置信区间(CI)(76.76,79.03)。基于CNN的分类器的AUC为86.11,CI(84.96,87.25),而肿瘤安置引导的CNN的平均AUC的平均为88.64 CI(87.57,89.72),其表现优于Formers,这是统计学上的重要(学生的T-p-Value 0.000018)。 结论:我们通过将肿瘤位置纳入CNN模型来实现统计学上的显着改善。我们的结果表明,手动分割的ROI可能不是最佳的。
Background and Purpose: Pediatric low-grade glioma (pLGG) is the most common type of brain tumor in children, and identification of molecular markers for pLGG is crucial for successful treatment planning. Convolutional Neural Network (CNN) models for pLGG subtype identification rely on tumor segmentation. We hypothesize tumor segmentations are suboptimal and thus, we propose to augment the CNN models using tumor location probability in MRI data. Materials and Methods: Our REB-approved retrospective study included MRI Fluid-Attenuated Inversion Recovery (FLAIR) sequences of 143 BRAF fused and 71 BRAF V600E mutated tumors. Tumor segmentations (regions of interest (ROIs)) were provided by a pediatric neuroradiology fellow and verified by a senior pediatric neuroradiologist. In each experiment, we randomly split the data into development and test with an 80/20 ratio. We combined the 3D binary ROI masks for each class in the development dataset to derive the probability density functions (PDF) of tumor location, and developed three pipelines: location-based, CNN-based, and hybrid. Results: We repeated the experiment with different model initializations and data splits 100 times and calculated the Area Under Receiver Operating Characteristic Curve (AUC). The location-based classifier achieved an AUC of 77.90, 95% confidence interval (CI) (76.76, 79.03). CNN-based classifiers achieved AUC of 86.11, CI (84.96, 87.25), while the tumor-location-guided CNNs outperformed the formers with an average AUC of 88.64 CI (87.57, 89.72), which was statistically significant (Student's t-test p-value 0.0018). Conclusion: We achieved statistically significant improvements by incorporating tumor location into the CNN models. Our results suggest that manually segmented ROIs may not be optimal.