论文标题
晶格原子干涉量的相干限制在一分钟等级
Coherence limits in lattice atom interferometry at the one-minute scale
论文作者
论文摘要
在量子计量和量子模拟中,必须在与环境不需要的相互作用导致反相互作用之前进行操纵。在原子干涉法中,非古典状态是一个空间叠加,每个原子在多个位置共存,作为相相位局部波袋的集合。这些状态可以在基本物理和惯性传感中进行精确的测量。但是,原子干涉仪通常使用原子喷泉,其中可用的审讯时间仅限于10 m喷泉约3秒钟。在这里,我们意识到一个具有空间叠加态的原子干涉仪,该原子叠加态长达70秒。我们分析了由原子合奏集体逐步塑造产生的理论和实验限制。这表明,在持有时间超过数十秒钟的时间内,矫正率显着降低。这些连贯性的收益可能可以实现重量测量,寻找第五力量或对重力的非经典性质的基本探针。
In quantum metrology and quantum simulation, a coherent non-classical state must be manipulated before unwanted interactions with the environment lead to decoherence. In atom interferometry, the non-classical state is a spatial superposition, where each atom coexists in multiple locations as a collection of phase-coherent partial wavepackets. These states enable precise measurements in fundamental physics and inertial sensing. However, atom interferometers usually use atomic fountains, where the available interrogation time is limited to around 3 seconds for a 10 m fountain. Here, we realise an atom interferometer with a spatial superposition state that is maintained for as long as 70 seconds. We analyse the theoretical and experimental limits to coherence arising from collective dephasing of the atomic ensemble. This reveals that the decoherence rate slows down markedly at hold times that exceed tens of seconds. These gains in coherence may enable gravimetry measurements, searches for fifth forces or fundamental probes into the non-classical nature of gravity.