论文标题
$ C_2 $ -SMMETRIC拓扑绝缘子的对称分辨的纠缠器
Symmetry-Resolved Entanglement of $C_2$-symmetric Topological Insulators
论文作者
论文摘要
对于一个任意维度的多体制系统,我们考虑了在$ C_2 $循环群体下不变的哈密顿人不变的费米子基础状态。占据的对称和反对称单粒子状态数量之间的绝对差$δ$是绝热的不变性。我们证明了基于此不变的配置和数字熵的下限。在带绝缘子中,可以直接从布里渊区的高对称点直接确定拓扑不变的$δ$和熵边界。
For a many-body system of arbitrary dimension, we consider fermionic ground states of non-interacting Hamiltonians invariant under a $C_2$ cyclic group. The absolute difference $Δ$ between the number of occupied symmetric and anti-symmetric single-particle states is an adiabatic invariant. We prove lower bounds on the configurational and the number entropy based on this invariant. In band insulators, the topological invariant $Δ$ and the entropy bounds can be directly determined from high symmetry points in the Brillouin zone.