论文标题

通过强化学习和双重指导,分散的覆盖道路计划

Decentralized Coverage Path Planning with Reinforcement Learning and Dual Guidance

论文作者

Liu, Yongkai, Hu, Jiawei, Dong, Wei

论文摘要

以分散的方式为多个机器人的计划覆盖路径增强了处理不确定故障的覆盖任务。为了为每个机器人以分布式的方式实现高效率,对复杂环境和合作社意图的全面理解至关重要。不幸的是,现有作品通常仅考虑这些因素的一部分,从而导致亚洲不平衡或不必要的重叠。为了解决这个问题,我们通过双重指导介绍了一个分散的强化学习框架,以训练每个代理,以直接通过环境状态直接解决分散的多个覆盖路径计划问题。由于分布式机器人需要其他意图以提高覆盖效率,因此我们利用两种指导方法,人造潜在领域和启发式指导,将其他意图包括并整合到每个机器人的观察中。借助我们构建的框架,结果表明我们的代理商成功地学习了自己的亚地区,同时实现了全面覆盖,平衡的subareas和低重叠率。然后,我们在这些次级群体中实现跨越树盖,以构建每个机器人的实际路线,并完成给定的覆盖范围任务。我们的性能也与先进的分散方法的状态进行比较,显示重叠率降低10%,同时在类似环境中执行高效率。

Planning coverage path for multiple robots in a decentralized way enhances robustness to coverage tasks handling uncertain malfunctions. To achieve high efficiency in a distributed manner for each single robot, a comprehensive understanding of both the complicated environments and cooperative agents intent is crucial. Unfortunately, existing works commonly consider only part of these factors, resulting in imbalanced subareas or unnecessary overlaps. To tackle this issue, we introduce a Decentralized reinforcement learning framework with dual guidance to train each agent to solve the decentralized multiple coverage path planning problem straightly through the environment states. As distributed robots require others intentions to perform better coverage efficiency, we utilize two guidance methods, artificial potential fields and heuristic guidance, to include and integrate others intentions into observations for each robot. With our constructed framework, results have shown our agents successfully learn to determine their own subareas while achieving full coverage, balanced subareas and low overlap rates. We then implement spanning tree cover within those subareas to construct actual routes for each robot and complete given coverage tasks. Our performance is also compared with the state of the art decentralized method showing at most 10 percent lower overlap rates while performing high efficiency in similar environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源