论文标题
通过应用程序聚类的爆发逃避器配备的HPC的应用程序聚类对动态I/O请求的概率调度
Probabilistic Scheduling of Dynamic I/O Requests via Application Clustering for Burst-Buffer Equipped HPC
论文作者
论文摘要
Burst-Buffering是一种有前途的存储解决方案,它引入了中间的高通量存储缓冲层,以减轻当前高性能计算(HPC)平台受到的I/O瓶颈问题。现有的基于马尔可夫链的概率I/O调度调度利用了爆发式撤离器的负载状态和应用程序的周期性特征,以减少I/O拥塞,这是由于爆炸式缓冲器的能力有限。但是,这种概率方法需要一致的应用程序特征,包括相似的I/O持续时间和较长的应用长度,以获得准确的I/O负载估计。这些一致性条件在现实情况下通常不存在。 在本文中,我们提出了一个基于应用程序群集(DPSAC)的动态概率I/O调度的通用框架,以使应用程序满足一致性要求。根据每个应用程序的I/O短语长度,我们的方案首先部署一维K-均值聚类算法以将应用程序聚集到群集中。接下来,它通过应用程序的概率模型来计算每个群集的预期工作量,然后按比例分配爆炸板。然后,为了处理应用程序的动态更改(加入和退出),它根据启发式策略更新簇。最后,它应用了基于应用程序工作负载和爆炸式缓冲机状态的概率I/O调度,以安排所有并发应用程序来缓解I/O的所有同时申请。合成数据的仿真结果表明,我们的DPSAC有效而有效。
Burst-Buffering is a promising storage solution that introduces an intermediate highthroughput storage buffer layer to mitigate the I/O bottleneck problem that the current High-Performance Computing (HPC) platforms suffer. The existing Markov-Chain based probabilistic I/O scheduling utilizes the load state of Burst-Buffers and the periodical characteristics of applications to reduce I/O congestion due to the limited capacity of Burst-Buffers. However, this probabilistic approach requires consistent I/O characteristics of applications, including similar I/O duration and long application length, in order to obtain an accurate I/O load estimation. These consistency conditions do not often hold in realistic situations. In this paper, we propose a generic framework of dynamic probabilistic I/O scheduling based on application clustering (DPSAC) to make applications meet the consistency requirements. According to the I/O phrase length of each application, our scheme first deploys a one-dimensional K-means clustering algorithm to cluster the applications into clusters. Next, it calculates the expected workload of each cluster through the probabilistic model of applications and then partitions the Burst-Buffers proportionally. Then, to handle dynamic changes (join and exit) of applications, it updates the clusters based on a heuristic strategy. Finally, it applies the probabilistic I/O scheduling, which is based on the distribution of application workload and the state of Burst-Buffers, to schedule I/O for all the concurrent applications to mitigate I/O congestion. The simulation results on synthetic data show that our DPSAC is effective and efficient.