论文标题
高阶的不连续性不连续的盖尔金方法,用于声保护方程
High-Order Non-Conforming Discontinuous Galerkin Methods for the Acoustic Conservation Equations
论文作者
论文摘要
这项工作比较了两种nitche型方法,用于治疗用于声保护方程的高阶不连续的galerkin(DG)求解器的不合格三角剖分。第一种方法(点对点插值)使用主要元素规定的正交点的不精确积分。第二种方法通过根据不合格元素之间的相交选择四倍来使用精确的集成(砂浆)。在文献中,据报道,据报道,有关性能和易于实施的一些出色特性,用于点对点插值。但是,我们表明,这种方法不能安全地用于声保护方程式的DG离散化,因为在我们的环境中,它产生了导致不稳定性的虚假振荡。这项工作提出了一个测试案例,我们可以观察到不稳定性,并表明需要确切的整合以维持稳定的方法。此外,我们还提供了具有精确集成的方法的详细分析。我们在全球和每个网格区域中分别显示最佳的空间收敛速率。该方法的构造使其可以在元素之间内在处理重叠。最后,我们强调了通过具有不同流体的数值测试用例在声学计算中不合格离散的好处。
This work compares two Nitsche-type approaches to treat non-conforming triangulations for a high-order discontinuous Galerkin (DG) solver for the acoustic conservation equations. The first approach (point-to-point interpolation) uses inexact integration with quadrature points prescribed by a primary element. The second approach uses exact integration (mortaring) by choosing quadratures depending on the intersection between non-conforming elements. In literature, some excellent properties regarding performance and ease of implementation are reported for point-to-point interpolation. However, we show that this approach can not safely be used for DG discretizations of the acoustic conservation equations since, in our setting, it yields spurious oscillations that lead to instabilities. This work presents a test case in that we can observe the instabilities and shows that exact integration is required to maintain a stable method. Additionally, we provide a detailed analysis of the method with exact integration. We show optimal spatial convergence rates globally and in each mesh region separately. The method is constructed such that it can natively treat overlaps between elements. Finally, we highlight the benefits of non-conforming discretizations in acoustic computations by a numerical test case with different fluids.