论文标题

psi-Moyal方程

PSI-Moyal equation

论文作者

Perepelkin, E. E., Sadovnikov, B. I., Inozemtseva, N. G., Korepanova, A. A.

论文摘要

完全考虑具有辐射的经典和量子系统(电磁/引力)需要将数学描述参与高运动值的广义相空间。基于量子力学方程的分散链,我们在四阶运动值的相空间中构建了von Neumann方程的概括。本文介绍了第四等级Wigner函数的新扩展定义,该定义是根据第二等级的波函数构建的。获得了第四等级的Wigner函数的新的扩展Moyal方程(PSI-Moyal方程)。证明了有关新PSI-Moyal方程及其解决方案的属性的定理。详细考虑了模型量子系统的一个示例。

A full consideration of classical and quantum systems with radiation (electromagnetic/gravitational) requires the involvement of a mathematical description in the generalized phase space of high kinematical values. Based on the dispersion chain of equations of quantum mechanics, we construct a generalization of the von Neumann equation for the density matrix in the phase space of fourth-order kinematical values. The paper introduces a new extended definition of the fourth rank Wigner function, which is constructed from the wave functions of the second rank. A new extended Moyal equation (PSI-Moyal equation) for the Wigner function of the fourth rank is obtained. Theorems on the properties of the new PSI-Moyal equation and its solutions are proved. An example of a model quantum system is considered in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源