论文标题

通过Sensogrip深度学习自动化障碍检测

Automated dysgraphia detection by deep learning with SensoGrip

论文作者

Bublin, Mugdim, Werner, Franz, Kerschbaumer, Andrea, Korak, Gernot, Geyer, Sebastian, Rettinger, Lena, Schoenthaler, Erna, Schmid-Kietreiber, Matthias

论文摘要

手写学习障碍的Dysgraphia对儿童的学术成果,日常生活和整体健康有严重的负面影响。早期检测功能障碍可以提早开始有针对性的干预措施。几项研究已经使用数字平板电脑调查了通过机器学习算法检测功能障碍的检测。但是,这些研究通过手动特征提取和选择以及二进制分类部署了经典的机器学习算法:障碍或没有功能障碍。在这项工作中,我们通过深入学习来预测SEMS得分(0到12之间),调查了手写功能的精细分级。我们的方法提供的精度超过99%,均方根误差低于一个误差,而不是自动的,而不是手动特征提取和选择。此外,我们使用了名为Sensogrip的智能笔,这是一支配备传感器的笔来捕获手写动力学,而不是平板电脑,在更现实的场景中可以写作评估。

Dysgraphia, a handwriting learning disability, has a serious negative impact on children's academic results, daily life and overall wellbeing. Early detection of dysgraphia allows for an early start of a targeted intervention. Several studies have investigated dysgraphia detection by machine learning algorithms using a digital tablet. However, these studies deployed classical machine learning algorithms with manual feature extraction and selection as well as binary classification: either dysgraphia or no dysgraphia. In this work, we investigated fine grading of handwriting capabilities by predicting SEMS score (between 0 and 12) with deep learning. Our approach provide accuracy more than 99% and root mean square error lower than one, with automatic instead of manual feature extraction and selection. Furthermore, we used smart pen called SensoGrip, a pen equipped with sensors to capture handwriting dynamics, instead of a tablet, enabling writing evaluation in more realistic scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源