论文标题

紧凑型快照高光谱成像的跨面关节优化和图像处理

End-to-end joint optimization of metasurface and image processing for compact snapshot hyperspectral imaging

论文作者

Zhang, Qiangbo, Yu, Zeqing, Liu, Xinyu, Wang, Chang, Zheng, Zhenrong

论文摘要

传统的快照高光谱成像系统通常需要多个基于折射的元素来调节光,从而导致笨重的框架。为了追求更紧凑的外形,基于跨表面的快照高光谱成像系统,在本文中提出了对元图和图像处理的关节优化。 Metasurfaces的前所未有的光操纵能力与神经网络结合使用,以编码和解码光场,以更好地进行高光谱成像。具体而言,利用了元整日的极强分散来区分光谱信息,并且基于光谱先验的神经网络被用于高光谱图像重建。通过构建基于元截面的高光谱成像的完全可区分的模型,可以共同优化前端跨端相位分布和后端恢复网络参数。该方法以数值的形式获得了高质量的高光谱重建结果,超过了分离优化方法。所提出的系统具有微型化和高光谱成像系统的可移植性的巨大潜力。

Traditional snapshot hyperspectral imaging systems generally require multiple refractive-optics-based elements to modulate light, resulting in bulky framework. In pursuit of a more compact form factor, a metasurface-based snapshot hyperspectral imaging system, which achieves joint optimization of metasurface and image processing, is proposed in this paper. The unprecedented light manipulation capabilities of metasurfaces are used in conjunction with neural networks to encode and decode light fields for better hyperspectral imaging. Specifically, the extremely strong dispersion of metasurfaces is exploited to distinguish spectral information, and a neural network based on spectral priors is applied for hyperspectral image reconstruction. By constructing a fully differentiable model of metasurface-based hyperspectral imaging, the front-end metasurface phase distribution and the back-end recovery network parameters can be jointly optimized. This method achieves high-quality hyperspectral reconstruction results numerically, outperforming separation optimization methods. The proposed system holds great potential for miniaturization and portability of hyperspectral imaging systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源