论文标题
在与分数谐波振荡器相关的热方程式上
On heat equations associated with fractional harmonic oscillators
论文作者
论文摘要
我们在Lebesgue空间中为分数热传播器$ e^{ - th^β} $,$ t,β> 0 $建立了一些固定的时间衰减估计值,与谐波振荡器$ h =-Δ+ | x |^2 $相关。然后,我们证明了非线性分数热方程的一些局部和全球良好性结果。
We establish some fixed-time decay estimates in Lebesgue spaces for the fractional heat propagator $e^{-tH^β}$, $t, β>0$, associated with the harmonic oscillator $H=-Δ+ |x|^2$. We then prove some local and global wellposedness results for nonlinear fractional heat equations.