论文标题
基于复杂网络的序列感知推荐方法
A Sequence-Aware Recommendation Method Based on Complex Networks
论文作者
论文摘要
在线商店和服务提供商在很大程度上依赖推荐软件来指导用户了解大量可用产品。因此,推荐系统领域引起了行业和学术界的越来越多的关注,但是尽管这项联合努力,该领域仍然面临一些挑战。例如,大多数现有工作将推荐问题作为矩阵完成问题建模,以预测用户对项目的偏好。该抽象可防止系统从记录在线会议中的用户操作的有序顺序中利用丰富的信息。为了解决这一限制,研究人员最近开发了一种有希望的新型算法,称为序列感知的推荐系统,以利用由正在进行的用户会话中的操作顺序组成的时间序列来预测用户的下一个操作。本文提出了一种基于隐藏度量空间模型生成的复杂网络的新型序列感知推荐方法,该方法结合了节点相似性和流行度以生成链接。我们从数据构建网络模型,然后使用它来预测用户的后续操作。网络模型提供了提高建议准确性的其他信息来源。提出的方法在大型数据集上实现和测试。结果证明,所提出的方法的性能比最先进的建议方法更好。
Online stores and service providers rely heavily on recommendation softwares to guide users through the vast amount of available products. Consequently, the field of recommender systems has attracted increased attention from the industry and academia alike, but despite this joint effort, the field still faces several challenges. For instance, most existing work models the recommendation problem as a matrix completion problem to predict the user preference for an item. This abstraction prevents the system from utilizing the rich information from the ordered sequence of user actions logged in online sessions. To address this limitation, researchers have recently developed a promising new breed of algorithms called sequence-aware recommender systems to predict the user's next action by utilizing the time series composed of the sequence of actions in an ongoing user session. This paper proposes a novel sequence-aware recommendation approach based on a complex network generated by the hidden metric space model, which combines node similarity and popularity to generate links. We build a network model from data and then use it to predict the user's subsequent actions. The network model provides an additional source of information that improves the accuracy of the recommendations. The proposed method is implemented and tested experimentally on a large dataset. The results prove that the proposed approach performs better than state-of-the-art recommendation methods.