论文标题
随机熵产生:非积极量子动态的波动关系和缓解不可逆性
Stochastic entropy production: Fluctuation relation and irreversibility mitigation in non-unital quantum dynamics
论文作者
论文摘要
在这项工作中,我们研究了开放量子系统中的随机熵产生,其时间演变由一类非积极量子图描述。特别是[物理学。 Rev. E 92,032129(2015)],我们认为可以与非平衡潜力有关的Kraus操作员。该课程将热化和平衡解释为非热状态。与Unital量子图不同,非单身是造成审查下开放量子系统的前向和向后动力学的不平衡的原因。在这里,集中于以不变状态的通勤状态的观察力,我们展示了非平衡电位如何进入随机熵产生的统计数据。特别是,我们证明了后者的波动关系,我们找到了一种方便的方式,仅在相对熵方面表达其平均值。然后,理论结果应用于具有非马克维亚瞬态的量子的热化,以及[Phys。在这种情况下,分析了研究2,033250(2020)]。
In this work, we study the stochastic entropy production in open quantum systems whose time evolution is described by a class of non-unital quantum maps. In particular, as in [Phys. Rev. E 92, 032129 (2015)], we consider Kraus operators that can be related to a nonequilibrium potential. This class accounts for both thermalization and equilibration to a non-thermal state. Unlike unital quantum maps, non-unitality is responsible for an unbalance of the forward and backward dynamics of the open quantum system under scrutiny. Here, concentrating on observables that commute with the invariant state of the evolution, we show how the non-equilibrium potential enters the statistics of the stochastic entropy production. In particular, we prove a fluctuation relation for the latter and we find a convenient way of expressing its average solely in terms of relative entropies. Then, the theoretical results are applied to the thermalization of a qubit with non-Markovian transient, and the phenomenon of irreversibility mitigation, introduced in [Phys. Rev. Research 2, 033250 (2020)], is analyzed in this context.