论文标题
任何整数四元的稳定数字数量
Number of stable digits of any integer tetration
论文作者
论文摘要
在本文中,我们提供了一个公式,该公式允许计算\ Mathbb {n} _0 $的任何整数四位化基础$ a \ a \ a \ a \的稳定数字数。稳定数字的数量,在电塔的给定高度处,表明(通用)四位化的最后数字被冻结了多少。我们的公式对于每个四个四元基础都是确切的,尽管在最差的情况下,在最差的情况下,在上限和下限之间,可能会出现等于$ v(a)+1 $数字($ v(a)$的最大差距($ v(a)$),这是确切的。此外,对于每一个$ a> 1 $,不是$ 10 $的倍数,我们表明$ v(a)$对应于$ 2 $ - adiC或$ 5 $ -ADIC的估值为$ a-1 $或$ a+1 $,甚至是$ 5 $ - adic的$ a^{2}+1 $的$ 5 $ - adic订单,根据$ a $ a $ a $ a $ 20 $ 20。
In the present paper we provide a formula that allows to compute the number of stable digits of any integer tetration base $a\in\mathbb{N}_0$. The number of stable digits, at the given height of the power tower, indicates how many of the last digits of the (generic) tetration are frozen. Our formula is exact for every tetration base which is not coprime to $10$, although a maximum gap equal to $V(a)+1$ digits (where $V(a)$ denotes the constant congruence speed of $a$) can occur, in the worst-case scenario, between the upper and lower bound. In addition, for every $a>1$ which is not a multiple of $10$, we show that $V(a)$ corresponds to the $2$-adic or $5$-adic valuation of $a-1$ or $a+1$, or even to the $5$-adic order of $a^{2}+1$, depending on the congruence class of $a$ modulo $20$.