论文标题

几何量子机学习的表示理论

Representation Theory for Geometric Quantum Machine Learning

论文作者

Ragone, Michael, Braccia, Paolo, Nguyen, Quynh T., Schatzki, Louis, Coles, Patrick J., Sauvage, Frederic, Larocca, Martin, Cerezo, M.

论文摘要

古典机器学习的最新进展表明,编码问题对称性的归纳偏见创建模型可以大大提高性能。这些思想的进口,结合了量子理论和对称性联系的现有丰富的作品,已经引起了几何量子机学习(GQML)的领域。在其经典对应物的成功之后,可以合理地期望GQML将在开发能够实现计算优势的特定问题和量子意识的模型中发挥至关重要的作用。尽管GQML的主要思想很简单 - 创建尊重数据对称性的体系结构,但其实际实施需要大量的小组表示理论知识。我们从量子学习的光学器件中介绍了代表理论工具的介绍,这是由涉及离散和连续群体的关键示例驱动的。这些示例是通过阐述通过“在小组代表的行动下的标签不变性”的正式捕获来缝制的,这是一次简短(但严格)的巡回演出,这是通过有限和紧凑的谎言群体代表理论的简短(但严格)的巡回演出,这是对Haar整合和tranirling和tranirting of Somplects somplects somplectsssometies of Somplecties of Somections of Somections of Sometsecties of Sometsecties of Sometsecties for Somecties for Sypectsections的无关工具的重新验证。

Recent advances in classical machine learning have shown that creating models with inductive biases encoding the symmetries of a problem can greatly improve performance. Importation of these ideas, combined with an existing rich body of work at the nexus of quantum theory and symmetry, has given rise to the field of Geometric Quantum Machine Learning (GQML). Following the success of its classical counterpart, it is reasonable to expect that GQML will play a crucial role in developing problem-specific and quantum-aware models capable of achieving a computational advantage. Despite the simplicity of the main idea of GQML -- create architectures respecting the symmetries of the data -- its practical implementation requires a significant amount of knowledge of group representation theory. We present an introduction to representation theory tools from the optics of quantum learning, driven by key examples involving discrete and continuous groups. These examples are sewn together by an exposition outlining the formal capture of GQML symmetries via "label invariance under the action of a group representation", a brief (but rigorous) tour through finite and compact Lie group representation theory, a reexamination of ubiquitous tools like Haar integration and twirling, and an overview of some successful strategies for detecting symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源