论文标题
在量子计算机上模拟肮脏的玻色子
Simulating dirty bosons on a quantum computer
论文作者
论文摘要
肮脏的玻色子物理学突出了量子系统中的有趣相互作用和相互作用的有趣相互作用,在描述以随机电势,掺杂的量子磁铁和无定形超导体的描述中起着核心作用。在这里,我们证明了如何使用量子计算机在一个和二维中阐明脏玻色子的物理。具体而言,我们使用绝热状态制备探索了障碍诱导的离域到位置的过渡。在一个维度上,量子电路可以被压缩到足够小的深度,以便在当前可用的量子计算机上执行。在二维中,压缩方案不再适用,因此需要使用大规模的经典状态矢量模拟来模拟量子计算机性能。此外,通过模拟嘈杂的量子计算机模拟相互作用的玻色子,使我们能够研究量子硬件噪声对模拟系统物理特性的影响。我们的结果表明,缩放定律控制噪声如何修饰可观察到的强度与其强度,电路深度和Qubit的数量。此外,我们观察到噪声会不同地影响到离域和本地化阶段。更好地理解噪声如何改变模拟系统的真实特性对于利用嘈杂的中间尺度量子设备来模拟肮脏的玻色子,甚至对于一般而言的凝结物质系统至关重要。
The physics of dirty bosons highlights the intriguing interplay of disorder and interactions in quantum systems, playing a central role in describing, for instance, ultracold gases in a random potential, doped quantum magnets, and amorphous superconductors. Here, we demonstrate how quantum computers can be used to elucidate the physics of dirty bosons in one and two dimensions. Specifically, we explore the disorder-induced delocalized-to-localized transition using adiabatic state preparation. In one dimension, the quantum circuits can be compressed to small enough depths for execution on currently available quantum computers. In two dimensions, the compression scheme is no longer applicable, thereby requiring the use of large-scale classical state vector simulations to emulate quantum computer performance. In addition, simulating interacting bosons via emulation of a noisy quantum computer allowed us to study the effect of quantum hardware noise on the physical properties of the simulated system. Our results suggest that scaling laws control how noise modifies observables versus its strength, the circuit depth, and the number of qubits. Moreover, we observe that noise impacts the delocalized and localized phases differently. A better understanding of how noise alters the genuine properties of the simulated system is essential for leveraging noisy intermediate-scale quantum devices for simulation of dirty bosons, and indeed for condensed matter systems in general.