论文标题
线上的fokas-lenells方程:全球适合孤子的人
The Fokas-Lenells equation on the line: Global well-posedness with solitons
论文作者
论文摘要
在本文中,我们证明了$ h^3(\ Mathbb {r})\ Cap H^{2,1}(\ Mathbb {r})$在fokas-lenells(fl)方程中的$ H^{2,1}(\ Mathbb {r})$,当该行中的最初数据包含solits.a sul int solife and solife and coptry solient cordrys condrys condrys condrofection。和散射参数。然后,使用反向散射转换技术来建立初始价值问题的全局良好性,并根据我们先前关于FL方程的全局良好性的结果来建立有限数量的孤子。
In this paper, we prove the existence of global solutions in $H^3(\mathbb{R})\cap H^{2,1}(\mathbb{R})$ to the Fokas-Lenells (FL) equation on the line when the initial data includes solitons.A key tool in proving this result is a newly modified Darboux transformation, which adds or subtracts a soliton with given spectral and scattering parameters. In this way the inverse scattering transform technique is then applied to establish the global well-posedness of initial value problem with a finite number of solitons based on our previous results on the global well-posedness of the FL equation.