论文标题
半监督语义细分的模糊积极学习
Fuzzy Positive Learning for Semi-supervised Semantic Segmentation
论文作者
论文摘要
半监督学习(SSL)基本上追求阶级边界探索,对人类注释的依赖较少。尽管典型的尝试着重于改善不可避免的容易出错的伪标记,但我们以不同的方式思考,并诉诸于来自多个可能正确候选标签的耗尽信息语义。在本文中,我们介绍了模糊积极学习(FPL),以插件方式进行准确的SSL语义细分,以适应性地鼓励模糊的积极预测并抑制高度可观的负面因素。在概念上很简单但实际上有效,FPL可以显着减轻错误的伪标签的干扰,并逐步实现明确的像素级语义歧视。具体而言,我们的FPL方法由两个主要组成部分组成,包括模糊积极分配(FPA),为每个像素和模糊正规化(FPR)提供自适应数量的标签,以限制模糊阳性类别的预测,从而在不同的接触范围内大于其他类别的预测。关于CityScapes和VOC 2012的理论分析和广泛的实验,具有一致的性能增长,证明了我们方法的优势。
Semi-supervised learning (SSL) essentially pursues class boundary exploration with less dependence on human annotations. Although typical attempts focus on ameliorating the inevitable error-prone pseudo-labeling, we think differently and resort to exhausting informative semantics from multiple probably correct candidate labels. In this paper, we introduce Fuzzy Positive Learning (FPL) for accurate SSL semantic segmentation in a plug-and-play fashion, targeting adaptively encouraging fuzzy positive predictions and suppressing highly-probable negatives. Being conceptually simple yet practically effective, FPL can remarkably alleviate interference from wrong pseudo labels and progressively achieve clear pixel-level semantic discrimination. Concretely, our FPL approach consists of two main components, including fuzzy positive assignment (FPA) to provide an adaptive number of labels for each pixel and fuzzy positive regularization (FPR) to restrict the predictions of fuzzy positive categories to be larger than the rest under different perturbations. Theoretical analysis and extensive experiments on Cityscapes and VOC 2012 with consistent performance gain justify the superiority of our approach.