论文标题

D/M/1队列:政策和控制

D/M/1 Queue: Policies and Control

论文作者

Finch, Steven

论文摘要

正如Smith(1953)首先证明的,平衡G/M/1-FIFO等待时间是指数分布的。对于其他客户分类策略,这种普遍性是不可行的。假设到达时间是恒定的。 D/M/1-LIFO密度的符号是完全已知的; D/M/1-Siro的数字是通过Burke(1967)引起的未发表的递归而产生的。考虑一下两项成本的加权总和,一个是让客户等待治疗,另一个是让服务器闲置。考虑到这一点,最佳时期时间是什么?这如何取决于政策的选择?

Equilibrium G/M/1-FIFO waiting times are exponentially distributed, as first proved by Smith (1953). For other client-sorting policies, such generality is not feasible. Assume that interarrival times are constant. Symbolics for the D/M/1-LIFO density are completely known; numerics for D/M/1-SIRO arise via an unpublished recursion due to Burke (1967). Consider a weighted sum of two costs, one from keeping clients waiting for treatment and the other from having the server idle. With this in mind, what is the optimal interarrival time and how does this depend on the choice of policy?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源