论文标题

石墨烯中高谐波产生的栅极可调量子途径

Gate-tunable quantum pathways of high harmonic generation in graphene

论文作者

Cha, Soonyoung, Kim, Minjeong, Kim, Youngjae, Choi, Shinyoung, Kang, Sejong, Kim, Hoon, Yoon, Sangho, Moon, Gunho, Kim, Taeho, Lee, Ye Won, Cho, Gil Young, Park, Moon Jeong, Kim, Cheol-Joo, Kim, B. J., Lee, JaeDong, Jo, Moon-Ho, Kim, Jonghwan

论文摘要

在强的激光磁场下,固体中的电子通过穿过子激光周期尺度的Bloch带中的量子路径来辐射高谐波场。通过高谐光辐射在动量空间中了解这些途径可以使全光超铁探针能够观察到相干的灯光驱动的过程并测量电子结构,如最近证明的半导体。然而,由于不存在带隙阻碍了确切途径的实验表征,因此这种示范在很大程度上受到了限制。在这项研究中,通过将化学电位的静电控制与HHG测量相结合,我们可以在强激光场下解决石墨烯中无质量的狄拉克费米的量子途径。 HHG的电调制揭示了多光子间激发通道之间的量子干扰。随着轻度互动超出扰动状态,椭圆极化的激光场有效地通过频带间和映射过渡之间的复杂耦合来有效地驱动无质量的dirac fermions,这是通过我们的理论计算证实的。我们的发现铺平了各种量子半法的狄拉克电子及其具有栅极控制的超快电子的强烈野外断层扫描。

Under strong laser fields, electrons in solids radiate high-harmonic fields by travelling through quantum pathways in Bloch bands in the sub-laser-cycle timescales. Understanding these pathways in the momentum space through the high-harmonic radiation can enable an all-optical ultrafast probe to observe coherent lightwave-driven processes and measure electronic structures as recently demonstrated for semiconductors. However, such demonstration has been largely limited for semimetals because the absence of the bandgap hinders an experimental characterization of the exact pathways. In this study, by combining electrostatic control of chemical potentials with HHG measurement, we resolve quantum pathways of massless Dirac fermions in graphene under strong laser fields. Electrical modulation of HHG reveals quantum interference between the multi-photon interband excitation channels. As the light-matter interaction deviates beyond the perturbative regime, elliptically polarized laser fields efficiently drive massless Dirac fermions via an intricate coupling between the interband and intraband transitions, which is corroborated by our theoretical calculations. Our findings pave the way for strong-laser-field tomography of Dirac electrons in various quantum semimetals and their ultrafast electronics with a gate control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源