论文标题

科法尔:图像搜索中的常识和事实推理

COFAR: Commonsense and Factual Reasoning in Image Search

论文作者

Gatti, Prajwal, Penamakuri, Abhirama Subramanyam, Teotia, Revant, Mishra, Anand, Sengupta, Shubhashis, Ramnani, Roshni

论文摘要

使人类优于现代人工智能模型的一种特征是能够解释超出视觉上明显内容的图像的能力。考虑以下两个自然语言搜索查询 - (i)“耐心等待购买冰淇淋的客户队列”和(ii)“游客队列将在印度看到著名的莫卧儿建筑”。解释这些查询需要一个人来推理(i)常识,例如将人们解释为客户或游客,等待购买或去看的行动; (ii)与指定视觉实体相关的事实或世界知识,例如,图像中的商店是否出售冰淇淋,还是图像中的地标是位于印度的莫卧儿建筑。这种推理不仅仅是视觉识别。为了在图像搜索中启用常识性和事实推理,我们提出了一个统一的框架,即知识检索的多模式变压器(KRAMT),该框架将图像中的命名视觉实体视为通往百科全书知识的门户,并将其与自然语言查询相关知识。此外,Kramt无缝地集成了视觉内容和基础知识,以了解图像和搜索查询之间的对齐。然后,该统一框架用于执行需要常识和事实推理的图像搜索。评估了Kramt的检索性能,并将其与我们介绍的新数据集中的相关方法进行了比较 - 即Cofar。我们在https://vl2g.github.io/projects/cofar中提供代码和数据集可用

One characteristic that makes humans superior to modern artificially intelligent models is the ability to interpret images beyond what is visually apparent. Consider the following two natural language search queries - (i) "a queue of customers patiently waiting to buy ice cream" and (ii) "a queue of tourists going to see a famous Mughal architecture in India." Interpreting these queries requires one to reason with (i) Commonsense such as interpreting people as customers or tourists, actions as waiting to buy or going to see; and (ii) Fact or world knowledge associated with named visual entities, for example, whether the store in the image sells ice cream or whether the landmark in the image is a Mughal architecture located in India. Such reasoning goes beyond just visual recognition. To enable both commonsense and factual reasoning in the image search, we present a unified framework, namely Knowledge Retrieval-Augmented Multimodal Transformer (KRAMT), that treats the named visual entities in an image as a gateway to encyclopedic knowledge and leverages them along with natural language query to ground relevant knowledge. Further, KRAMT seamlessly integrates visual content and grounded knowledge to learn alignment between images and search queries. This unified framework is then used to perform image search requiring commonsense and factual reasoning. The retrieval performance of KRAMT is evaluated and compared with related approaches on a new dataset we introduce - namely COFAR. We make our code and dataset available at https://vl2g.github.io/projects/cofar

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源