论文标题
(相对)$ f $ - 理性签名的伽马建构和永久性
The gamma-construction and permanence properties of the (relative) $F$-rational signature
论文作者
论文摘要
我们研究了Smirnov--Tucker定义和研究的相对$ f $理性签名的一些永久性属性。我们表明,这种不变性与伽马构建兼容,然后从Smirnov--Tucker建立的$ f $ finite案例中得出其他主要结果。我们还获得了有关Hochster-YAO定义和研究的$ F $合理签名的有限结果。我们在此过程中探索了伽马构建的某些特征,这可能引起了独立的兴趣。
We study some permanence properties of the relative $F$-rational signature defined and studied by Smirnov--Tucker. We show that this invariant is compatible with the gamma-construction, and then derive other main results from the $F$-finite case established by Smirnov--Tucker. We also obtain limited results about the $F$-rational signature defined and studied by Hochster--Yao. We explore some features of the gamma-construction along the way, which may be of independent interest.