论文标题

具有随机动力学系统的稳健贝叶斯状态和参数估计框架,具有随时间变化和时变的参数

Robust Bayesian state and parameter estimation framework for stochastic dynamical systems with combined time-varying and time-invariant parameters

论文作者

Bisaillon, Philippe, Robinson, Brandon, Khalil, Mohammad, Pettit, Chris L., Poirel, Dominique, Sarkar, Abhijit

论文摘要

我们考虑具有随时间变化和时间不变参数的动态系统的状态和参数估计。已经表明,马尔可夫链蒙特卡洛(MCMC)算法的鲁棒性与非线性过滤器一起估算时间不变的参数提供了比仅使用非线性过滤器获得的合并状态和参数估计获得的估计值更可靠的估计值。以类似的方式,我们采用了扩展的卡尔曼过滤器(EKF)进行状态估计和时间变化系统参数的估计,但保留将估计时间不变参数估算为MCMC算法的任务。在标准方法中,我们扩大了状态向量,以包括系统的原始状态和时间变化的参数子集。每个随时间变化的参数都会受到白噪声过程的干扰,我们将这种人造噪声的强度视为MCMC估计的额外时间不变参数,从而规定了对手动调整的需求。通常,随时间变化和时变的参数都附加在状态向量中,因此出于估算的目的,两者都可以随时间变化。但是,允许时间不变的系统参数随时间变化,将人工动力学引入系统,我们通过将这些时间不变的参数视为静态参数并使用MCMC估算它们来避免这种动力。此外,通过估计MCMC的时间不变参数,增强状态较小,并且随后的状态空间模型中的非线性往往比常规方法弱。我们为简单的动态系统说明了上述方法,其中某些模型参数是时间变化的,而其余参数则是时间不变的。

We consider state and parameter estimation for a dynamical system having both time-varying and time-invariant parameters. It has been shown that the robustness of the Markov Chain Monte Carlo (MCMC) algorithm for estimating time-invariant parameters alongside nonlinear filters for state estimation provided more reliable estimates than the estimates obtained solely using nonlinear filters for combined state and parameter estimation. In a similar fashion, we adopt the extended Kalman filter (EKF) for state estimation and the estimation of the time-varying system parameters, but reserve the task of estimating time-invariant parameters to the MCMC algorithm. In a standard method, we augment the state vector to include the original states of the system and the subset of the parameters that are time-varying. Each time-varying parameter is perturbed by a white noise process, and we treat the strength of this artificial noise as an additional time-invariant parameter to be estimated by MCMC, circumventing the need for manual tuning. Conventionally, both time-varying and time-invariant parameters are appended in the state vector, and thus for the purpose of estimation, both are free to vary in time. However, allowing time-invariant system parameters to vary in time introduces artificial dynamics into the system, which we avoid by treating these time-invariant parameters as static and estimating them using MCMC. Furthermore, by estimating the time-invariant parameters by MCMC, the augmented state is smaller and the nonlinearity in the ensuing state space model will tend to be weaker than in the conventional approach. We illustrate the above-described approach for a simple dynamical system in which some model parameters are time-varying, while the remaining parameters are time-invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源