论文标题

EISEG:基于PaddlePaddle的有效的交互式分割工具

EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle

论文作者

Hao, Yuying, Liu, Yi, Chen, Yizhou, Han, Lin, Peng, Juncai, Tang, Shiyu, Chen, Guowei, Wu, Zewu, Chen, Zeyu, Lai, Baohua

论文摘要

近年来,深度学习的快速发展为基于神经网络的图像和视频细分方法带来了巨大进步。但是,为了释放此类模型的全部潜力,对于模型训练,需要大量高质量注释的图像。当前,许多使用的开源图像细分软件在很大程度上依赖于乏味且耗时的手动注释。在这项工作中,我们介绍了Eiseg,这是一种有效的交互式分割注释工具,可以极大地提高图像分割注释效率,仅单击几下就产生了高度准确的分割掩码。我们还提供了各种特定领域的模型,用于遥感,医学成像,工业质量检查,人体细分和视频细分的时间意识模型。我们的算法和用户界面的源代码可在以下网址获得:https://github.com/paddlepaddle/paddleseg。

In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源