论文标题
对称生成功能和欧拉(Euler-Sirl)关于排列的统计数据
Symmetric generating functions and Euler-Stirling statistics on permutations
论文作者
论文摘要
我们介绍(Bi-)对称生成功能,以供欧拉 - 斯特林统计信息的联合分布,包括后裔数量($ \ Mathsf {des} $),逆下降($ \ Mathsf {ides {ides} $),左至右的maxima($ \ nathsf {$ \ m rmmax} $ {lmax} $ formax for ($ \ mathsf {rmax} $)和左右minima的数量($ \ mathsf {lmin} $)。我们还展示了他们如何恢复由于Carlitz,Roselle和Scoville(1966)引起的置换的经典对称生成函数。 我们的证明利用了反转序列的三种不同的递归结构,即对欧拉(Euler-Sirling)统计的多个等分分配的射击,而不是基本超代系列的排列和转换公式。此外,我们建立了对反转序列的Euler-Sirl统计数据的新的四倍等级,因为Schlosser和作者提出的猜想(2020)(2020年)。
We present (bi-)symmetric generating functions for the joint distributions of Euler-Stirling statistics on permutations, including the number of descents ($\mathsf{des}$), inverse descents ($\mathsf{ides}$), the number of left-to-right maxima ($\mathsf{lmax}$), the number of right-to-left maxima ($\mathsf{rmax}$) and the number of left-to-right minima ($\mathsf{lmin}$). We also show how they recover the classical symmetric generating function of permutations due to Carlitz, Roselle and Scoville (1966). Our proofs exploit three different recursive constructions of inversion sequences, bijections on the multiple equidistributions of Euler-Stirling statistics over permutations and transformation formulas of basic hypergeometric series. Furthermore, we establish a new quadruple equidistribution of Euler-Stirling statistics over inversion sequences, as progress towards a conjecture proposed by Schlosser and the author (2020).