论文标题

Z^2上的简单随机步行在轴上扰动(更新情况)

Simple random walk on Z^2 perturbed on the axis (renewal case)

论文作者

Andreoletti, Pierre, Debs, Pierre

论文摘要

我们在Z^2上研究一个简单的随机步行,并在轴上有限制。当颗粒(例如,参见[DAL88])提交到局部场时,动机来自物理学。在我们的情况下,我们假设粒子在锥体中自由演变,但是在接触轴时,力将其逐渐向原点推回。主要结果证明,该力可以以一种更新结构出现在随机行走的轨迹中出现的方式。这意味着仅限于轴的轨迹部分存在千古的结果。

We study a simple random walk on Z^2 with constraints on the axis. Motivation comes from physics when particles (a gas for example, see [Dal88]) are submitted to a local field. In our case we assume that the particle evolves freely in the cones but when touching the axis a force pushes it back progressively to the origin. The main result proves that this force can be parametrized in such a way that a renewal structure appears in the trajectory of the random walk. This implies the existence of an ergodic result for the parts of the trajectory restricted to the axis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源