论文标题
用全球知识蒸馏对象探测器
Distilling Object Detectors With Global Knowledge
论文作者
论文摘要
知识蒸馏学习一个轻巧的学生模型,该模型模仿了一位笨拙的老师。现有方法将知识视为每个实例或其关系的特征,即仅来自教师模型的实例级知识,即本地知识。但是,实证研究表明,当地知识在对象检测任务中很嘈杂,尤其是在模糊,遮挡或小实例上。因此,一种更内在的方法是衡量W.R.T.实例的表示。教师和学生探测器的两个特征空间中的一组共同基础向量,即全球知识。然后,蒸馏算法可以作为空间比对应用。为此,提出了一个新型的原型生成模块(PGM),以在两个特征空间中找到称为原型的共同基础向量。然后,使用可靠的蒸馏模块(RDM)来基于原型和滤液嘈杂的全局和局部知识来构建全局知识,并通过测量两个特征空间中表示的差异。在Pascal和可可数据集上使用更快的RCNN和VESINANET进行的实验表明,我们的方法可以用各种骨架来蒸馏对象探测器的最佳性能,甚至超过了教师模型的性能。我们还表明,现有方法可以轻松与全球知识相结合并获得进一步的进步。代码可用:https://github.com/hikvision-research/davar-lab-ml。
Knowledge distillation learns a lightweight student model that mimics a cumbersome teacher. Existing methods regard the knowledge as the feature of each instance or their relations, which is the instance-level knowledge only from the teacher model, i.e., the local knowledge. However, the empirical studies show that the local knowledge is much noisy in object detection tasks, especially on the blurred, occluded, or small instances. Thus, a more intrinsic approach is to measure the representations of instances w.r.t. a group of common basis vectors in the two feature spaces of the teacher and the student detectors, i.e., global knowledge. Then, the distilling algorithm can be applied as space alignment. To this end, a novel prototype generation module (PGM) is proposed to find the common basis vectors, dubbed prototypes, in the two feature spaces. Then, a robust distilling module (RDM) is applied to construct the global knowledge based on the prototypes and filtrate noisy global and local knowledge by measuring the discrepancy of the representations in two feature spaces. Experiments with Faster-RCNN and RetinaNet on PASCAL and COCO datasets show that our method achieves the best performance for distilling object detectors with various backbones, which even surpasses the performance of the teacher model. We also show that the existing methods can be easily combined with global knowledge and obtain further improvement. Code is available: https://github.com/hikvision-research/DAVAR-Lab-ML.