论文标题
欧几里得第一-Passage Percolation的比率收敛速率:图形无限laplacian的应用
Ratio convergence rates for Euclidean first-passage percolation: Applications to the graph infinity Laplacian
论文作者
论文摘要
在本文中,我们证明了在连通性阈值处长度尺度的图形无穷度拉普拉斯方程的第一个定量收敛速率。在基于图的半监督学习社区中,这个方程式也称为Lipschitz学习。图无限拉普拉斯方程的特征是基础空间上的度量,而收敛速率来自图形距离的收敛速率。在连通性阈值下,此问题与欧几里得的第一次通道渗透有关,这与欧几里得距离函数有关$ d_ {h}(x,y)$上的均质poisson Point Possct上的$ \ Mathbb {r}^d $,可允许的步骤在最多$ h> 0 $ h> 0 $ 0 $ h> 0 $。使用适当的距离函数和子功能的正规化,我们证明$ {d_ {h_s}(0,se_1)}/ s \ toσ$ as $ s \ to as s \ to \ infty $几乎肯定肯定是$ ceq Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q $当$ h_s \ to \ infty $时,由于缺乏近似的超级药物而无法获得收敛率。取而代之的是,我们证明了比率$ \ frac {d_ {h}(0,se_1)} {d_ {h}(0,2Se_1)} \ to \ frac {1} {2} $当$ h $ frozen frozen且不依赖$ s $时。将其与我们在(Bungert,Calder,Roith,IMA数字分析杂志,2022年)中开发的技术相结合,我们表明,这种比率收敛的概念足以在渗透率尺度下建立图形无限Laplace方程溶液的均匀收敛速率。
In this paper we prove the first quantitative convergence rates for the graph infinity Laplace equation for length scales at the connectivity threshold. In the graph-based semi-supervised learning community this equation is also known as Lipschitz learning. The graph infinity Laplace equation is characterized by the metric on the underlying space, and convergence rates follow from convergence rates for graph distances. At the connectivity threshold, this problem is related to Euclidean first passage percolation, which is concerned with the Euclidean distance function $d_{h}(x,y)$ on a homogeneous Poisson point process on $\mathbb{R}^d$, where admissible paths have step size at most $h>0$. Using a suitable regularization of the distance function and subadditivity we prove that ${d_{h_s}(0,se_1)}/ s \to σ$ as $s\to\infty$ almost surely where $σ\geq 1$ is a dimensional constant and $h_s\gtrsim \log(s)^\frac{1}{d}$. A convergence rate is not available due to a lack of approximate superadditivity when $h_s\to \infty$. Instead, we prove convergence rates for the ratio $\frac{d_{h}(0,se_1)}{d_{h}(0,2se_1)}\to \frac{1}{2}$ when $h$ is frozen and does not depend on $s$. Combining this with the techniques that we developed in (Bungert, Calder, Roith, IMA Journal of Numerical Analysis, 2022), we show that this notion of ratio convergence is sufficient to establish uniform convergence rates for solutions of the graph infinity Laplace equation at percolation length scales.