论文标题

量子稳定器代码中移动非亚伯人的图表理论

Graph gauge theory of mobile non-Abelian anyons in a qubit stabilizer code

论文作者

Lensky, Yuri D., Kechedzhi, Kostyantyn, Aleiner, Igor, Kim, Eun-Ah

论文摘要

稳定器代码允许量子信息的非本地编码和处理。稳定器表面代码的变形引入了新的和非平凡的几何形状,尤其是导致长期以来被追捕的物体出现,称为投影性的是非亚伯利亚人。这样的人的编织是拓扑量子计算的关键要素。我们建议一种简单而系统的方法,用于构建有效的统一协议,以构建对非亚伯人的编织,操纵和读数以及对其纠缠状态的准备。我们将表面代码推广到具有2、3和4度的顶点的更通用的图形。我们的方法基于在此图上定义的稳定器代码的映射到相对于两个出现量规字段的Majoraana fermions模型。一个规场类似于物理磁场。另一个是导致非亚伯族人统计统计的出现,并且具有纯粹的几何起源。该字段来自于在二聚体覆盖物统计理论中称为Kasteleyn方向的图表上分配某些方向的规则。图表上的每个3度顶点都带有此“ Kasteleyn”字段的通量,并容纳非亚伯利亚人。在我们的方法中,所有与实验相关的操作员都通过区域,单位性和规格不变性来明确固定。我们通过为实验验证非亚伯统计的实验来说明我们方法的力量。

Stabilizer codes allow for non-local encoding and processing of quantum information. Deformations of stabilizer surface codes introduce new and non-trivial geometry, in particular leading to emergence of long sought after objects known as projective Ising non-Abelian anyons. Braiding of such anyons is a key ingredient of topological quantum computation. We suggest a simple and systematic approach to construct effective unitary protocols for braiding, manipulation and readout of non-Abelian anyons and preparation of their entangled states. We generalize the surface code to a more generic graph with vertices of degree 2, 3 and 4. Our approach is based on the mapping of the stabilizer code defined on such a graph onto a model of Majorana fermions charged with respect to two emergent gauge fields. One gauge field is akin to the physical magnetic field. The other one is responsible for emergence of the non-Abelian anyonic statistics and has a purely geometric origin. This field arises from assigning certain rules of orientation on the graph known as the Kasteleyn orientation in the statistical theory of dimer coverings. Each 3-degree vertex on the graph carries the flux of this "Kasteleyn" field and hosts a non-Abelian anyon. In our approach all the experimentally relevant operators are unambiguously fixed by locality, unitarity and gauge invariance. We illustrate the power of our method by making specific prescriptions for experiments verifying the non-Abelian statistics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源