论文标题

部分可观测时空混沌系统的无模型预测

A Transfer Learning Based Approach for Classification of COVID-19 and Pneumonia in CT Scan Imaging

论文作者

Desai, Gargi, Elsayed, Nelly, Elsayed, Zag, Ozer, Murat

论文摘要

Covid-19病毒的传播使世界仍然不知所措。截至2021年11月,已有超过2.5亿个受感染的病例影响了219个国家和地区,全世界仍处于大流行时期。在CT扫描图像上使用深度学习方法检测COVID-19可以在协助医疗专业人员和决策机构控制疾病的传播并为患者提供基本支持方面发挥至关重要的作用。卷积神经网络被广泛用于大规模图像识别领域。 RT-PCR诊断Covid-19的当前方法是耗时的,并且普遍限制。这项研究旨在提出一种基于深度学习的方法,以对199例肺炎患者,细菌性肺炎,病毒性肺炎和健康(正常病例)进行分类。本文使用深度转移学习通过Inception-Resnet-V2神经网络体系结构对数据进行分类。提出的模型已故意简化以降低实施成本,以便可以轻松地在不同的地理区域(尤其是农村和发展中的地区)实施和使用。

The world is still overwhelmed by the spread of the COVID-19 virus. With over 250 Million infected cases as of November 2021 and affecting 219 countries and territories, the world remains in the pandemic period. Detecting COVID-19 using the deep learning method on CT scan images can play a vital role in assisting medical professionals and decision authorities in controlling the spread of the disease and providing essential support for patients. The convolution neural network is widely used in the field of large-scale image recognition. The current method of RT-PCR to diagnose COVID-19 is time-consuming and universally limited. This research aims to propose a deep learning-based approach to classify COVID-19 pneumonia patients, bacterial pneumonia, viral pneumonia, and healthy (normal cases). This paper used deep transfer learning to classify the data via Inception-ResNet-V2 neural network architecture. The proposed model has been intentionally simplified to reduce the implementation cost so that it can be easily implemented and used in different geographical areas, especially rural and developing regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源