论文标题
ADS时空中的Einstein-Scalar场解决方案:云,边界条件和标量多数
Einstein-scalar field solutions in AdS spacetime: clouds, boundary conditions, and scalar multipoles
论文作者
论文摘要
我们考虑了一个爱因斯坦 - 标准场模型,该模型是$ {\ cal n} = 8 $ $ d = 4 $ guauged Supergravity的一致截断,标量场具有从下方没有的潜力和Breitenlohner-Freedman界面上方的tachyonic质量。我们研究球形对称的渐近抗DE保姆孤子和黑洞溶液,目的是阐明无穷大的渐近物和可能的边界条件。新兴的图片与具有相同标量质量和四分之一的自我相互作用项的爱因斯坦 - 标准场模型所发现的图片形成鲜明对比。我们还为存在孤子解的存在提供了参数,可以将其视为(探针)标量多极云的非线性延续,重点是偶极子情况。除了数值结果外,还为具有单极和偶极标量场的孤子找到了精确的溶液,作为广告背景周围的扰动。
We consider an Einstein-scalar field model which is a consistent truncation of ${\cal N}=8$ $D=4$ gauged supergravity, the scalar field possessing a potential which is unbounded from below and a tachyonic mass above the Breitenlohner-Freedman bound. We investigate the spherically symmetric asymptotically anti-de Sitter soliton and black hole solutions, with the aim of clarifying the asymptotics and the possible boundary conditions at infinity. The emerging picture is contrasted with that found for an Einstein-scalar field model with the same scalar mass and a quartic self-interaction term. We also provide arguments for the existence of solitonic solutions which can be viewed as non-linear continuation of the (probe) scalar multipolar clouds, with emphasis on the dipole case. Apart from numerical results, exact solutions are found for solitons with a monopole and dipole scalar field, as perturbations around the AdS background.