论文标题

$ f(r)$重力的麦克斯韦扩展

Maxwell extension of $f(R)$ gravity

论文作者

Cebecioğlu, Oktay, Saban, Ahmet, Kibaroğlu, Salih

论文摘要

受到麦克斯韦对称性概括(麦克斯韦重力)的启发,我们构建了$ f(r)$重力的麦克斯韦扩展。我们发现,繁殖对称性的半简单扩展使我们能够以四维$ f(r)$重力引入宇宙学恒定术语。这种对称性还允许向麦克斯韦$ f(r)$理论引入非变化扭转。发现与Maxwell扩展相关的反对称量规场$ b^{ab} $被认为是扭转的来源。还发现,运动的重力方程以背景场的能量量张量的形式获得了新术语。简要讨论了这些新方程的重要性。

Inspired by the Maxwell symmetry generalization of general relativity (Maxwell gravity), we have constructed the Maxwell extension of $f(R)$ gravity. We found that the semi-simple extension of the Poincare symmetry allows us to introduce geometrically a cosmological constant term in four-dimensional $f(R)$ gravity. This symmetry also allows the introduction of a non-vanishing torsion to the Maxwell $f(R)$ theory. It is found that the antisymmetric gauge field $B^{ab}$ associated with Maxwell extension is considered as a source of the torsion. It is also found that the gravitational equation of motion acquires a new term in the form of an energy-momentum tensor for the background field. The importance of these new equations is briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源