论文标题
KDV,BousSinesQ和KP方程的可集成延迟差异和延迟差异类似物
Integrable delay-difference and delay-differential analogues of the KdV, Boussinesq, and KP equations
论文作者
论文摘要
提出了KDV和BousSinesQ(BSQ)方程的延迟差异和延迟分化类似物。他们每个人都有N-Soliton溶液,并以延迟参数接近0。此外,还提出了KP方程的延迟差异类似物。我们讨论了其N-索顿解决方案和限制时延迟参数接近0。最后,阐明了KDV,BSQ和KP方程的延迟分化类似物之间的关系。即,延迟KP方程的减少产生延迟KDV和延迟BSQ方程。
Delay-difference and delay-differential analogues of the KdV and Boussinesq (BSQ) equations are presented. Each of them has the N-soliton solution and reduces to an already known soliton equation as the delay parameter approaches 0. In addition, a delay-differential analogue of the KP equation is proposed. We discuss its N-soliton solution and the limit as the delay parameter approaches 0. Finally, the relationship between the delay-differential analogues of the KdV, BSQ, and KP equations is clarified. Namely, reductions of the delay KP equation yield the delay KdV and delay BSQ equations.