论文标题

微调分类器:查找与温度的相关性

Fine-tune your Classifier: Finding Correlations With Temperature

论文作者

Chamand, Benjamin, Risser-Maroix, Olivier, Kurtz, Camille, Joly, Philippe, Loménie, Nicolas

论文摘要

温度是涉及神经网络(例如分类或度量学习)的各种任务中广泛使用的超参数,其选择可以直接影响模型性能。大多数现有作品使用超参数优化方法选择其值,需要多次运行才能找到最佳值。我们建议通过将数据集描述为在表示上计算的一组统计数据来分析温度对分类任务的影响,我们可以构建一种启发式,从而为我们提供默认的温度值。我们研究这些提取的统计数据与观察到的最佳温度之间的相关性。这项关于一百多个不同数据集和功能提取器的一百多个组合的初步研究突出了有希望的结果,用于建造温度的一般启发式。

Temperature is a widely used hyperparameter in various tasks involving neural networks, such as classification or metric learning, whose choice can have a direct impact on the model performance. Most of existing works select its value using hyperparameter optimization methods requiring several runs to find the optimal value. We propose to analyze the impact of temperature on classification tasks by describing a dataset as a set of statistics computed on representations on which we can build a heuristic giving us a default value of temperature. We study the correlation between these extracted statistics and the observed optimal temperatures. This preliminary study on more than a hundred combinations of different datasets and features extractors highlights promising results towards the construction of a general heuristic for temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源