论文标题
MotionDeltAcnn:CNN稀疏的移动相机视频中框架差异的推断
MotionDeltaCNN: Sparse CNN Inference of Frame Differences in Moving Camera Videos
论文作者
论文摘要
视频输入的卷积神经网络推断在计算上是昂贵的,需要高内存带宽。最近,Deltacnn仅通过处理与上一个帧的重大更新的像素来降低成本。但是,Deltacnn依赖于静态相机输入。移动摄像头增加了如何将新揭开的图像区域与已经处理的区域融合在一起的新挑战,可以有效地降低更新速率 - 而不必增加内存开销而不知道未来帧的相机外部设备。在这项工作中,我们提出了MotionDeltAcnn,这是一个稀疏的CNN推理框架,支持移动相机。我们介绍了球形缓冲区和衬垫卷积,以使新揭露的区域和以前处理的区域无缝融合,而不会增加内存足迹。我们的评估表明,对于移动相机视频,我们的表现最高多达90%。
Convolutional neural network inference on video input is computationally expensive and requires high memory bandwidth. Recently, DeltaCNN managed to reduce the cost by only processing pixels with significant updates over the previous frame. However, DeltaCNN relies on static camera input. Moving cameras add new challenges in how to fuse newly unveiled image regions with already processed regions efficiently to minimize the update rate - without increasing memory overhead and without knowing the camera extrinsics of future frames. In this work, we propose MotionDeltaCNN, a sparse CNN inference framework that supports moving cameras. We introduce spherical buffers and padded convolutions to enable seamless fusion of newly unveiled regions and previously processed regions -- without increasing memory footprint. Our evaluation shows that we outperform DeltaCNN by up to 90% for moving camera videos.