论文标题
3D点云语义细分的数字自适应原型学习
Number-Adaptive Prototype Learning for 3D Point Cloud Semantic Segmentation
论文作者
论文摘要
3D点云语义分割是3D场景理解的基本任务之一,并且已被广泛用于元应用应用程序。许多最近的3D语义分割方法学习了每个语义类别的单个原型(分类器权重),并根据其最近的原型对3D点进行分类。但是,每个类别仅学习一个原型,限制了模型描述类中高方差模式的能力。在本文中,我们建议使用自适应数量的原型来动态描述语义类中的不同点模式,而不是在每个类中学习单个原型。凭借视觉变压器的强大功能,我们为点云语义分割设计了多个自适应原型学习(NAPL)模型。为了培训NAPL模型,我们提出了一种简单而有效的原型辍学训练策略,使我们的模型能够适应每个类别的原型。 Semantickitti数据集的实验结果表明,基于点的分类范式,我们的方法比基线模型获得了2.3%的改进。
3D point cloud semantic segmentation is one of the fundamental tasks for 3D scene understanding and has been widely used in the metaverse applications. Many recent 3D semantic segmentation methods learn a single prototype (classifier weights) for each semantic class, and classify 3D points according to their nearest prototype. However, learning only one prototype for each class limits the model's ability to describe the high variance patterns within a class. Instead of learning a single prototype for each class, in this paper, we propose to use an adaptive number of prototypes to dynamically describe the different point patterns within a semantic class. With the powerful capability of vision transformer, we design a Number-Adaptive Prototype Learning (NAPL) model for point cloud semantic segmentation. To train our NAPL model, we propose a simple yet effective prototype dropout training strategy, which enables our model to adaptively produce prototypes for each class. The experimental results on SemanticKITTI dataset demonstrate that our method achieves 2.3% mIoU improvement over the baseline model based on the point-wise classification paradigm.