论文标题
像鹰一样的仿真模型不能解决星系和星系簇中的熵核心问题
EAGLE-like simulation models do not solve the entropy core problem in groups and clusters of galaxies
论文作者
论文摘要
最近的高分辨率宇宙流体动力学模拟具有多种代码系统地预测低红移的集群内培养基中的大量熵,从而导致平坦的熵剖面和抑制的冷核种群。该预测与X射线观察的组和集群的观察不一致。我们使用鹰银河形成模型的新实现来研究中心熵的敏感性以及对尺寸$ m_ {500} = 8.8 \ 8.8 \ times 10^{12} {12}}的质量$ m_ {500} = {\ rm m m} $ 2. $ 2. 10^{14}〜{\ rm m} _ \ odot $。使用我们的参考模型校准以匹配场星系的恒星质量功能,我们确认我们的模拟组和簇包含热气,其内核中的熵过高。在没有人工传导,金属冷却或AGN反馈的情况下进行的其他模拟会产生较低的熵水平,但仍无法再现观察到的轮廓。相反,没有超新星反馈的两个对象显示出显着的熵增加,这可以归因于过度冷却和恒星形成。改变AGN加热温度不会极大地影响轮廓形状,而只会影响整体归一化。最后,我们将运行与四个AGN加热方案进行了比较,并获得了相似的曲线,除了双极AGN加热,这会产生较高,更均匀的熵分布。我们的研究留下了一个问题,即模拟中的熵核心问题,尤其是缺乏幂律酷核概况,这是由于物理假设,缺失的物理过程或数值不足而引起的。
Recent high-resolution cosmological hydrodynamic simulations run with a variety of codes systematically predict large amounts of entropy in the intra-cluster medium at low redshift, leading to flat entropy profiles and a suppressed cool-core population. This prediction is at odds with X-ray observations of groups and clusters. We use a new implementation of the EAGLE galaxy formation model to investigate the sensitivity of the central entropy and the shape of the profiles to changes in the sub-grid model applied to a suite of zoom-in cosmological simulations of a group of mass $M_{500} = 8.8 \times 10^{12}~{\rm M}_\odot$ and a cluster of mass $2.9 \times 10^{14}~{\rm M}_\odot$. Using our reference model, calibrated to match the stellar mass function of field galaxies, we confirm that our simulated groups and clusters contain hot gas with too high entropy in their cores. Additional simulations run without artificial conduction, metal cooling or AGN feedback produce lower entropy levels but still fail to reproduce observed profiles. Conversely, the two objects run without supernova feedback show a significant entropy increase which can be attributed to excessive cooling and star formation. Varying the AGN heating temperature does not greatly affect the profile shape, but only the overall normalisation. Finally, we compared runs with four AGN heating schemes and obtained similar profiles, with the exception of bipolar AGN heating, which produces a higher and more uniform entropy distribution. Our study leaves open the question of whether the entropy core problem in simulations, and particularly the lack of power-law cool-core profiles, arise from incorrect physical assumptions, missing physical processes, or insufficient numerical resolution.