论文标题

空间异质性将图灵模式定位在反应 - 跨扩散系统中

Spatial Heterogeneity Localizes Turing Patterns in Reaction-Cross-Diffusion Systems

论文作者

Gaffney, Eamonn A., Krause, Andrew L., Maini, Philip K., Wang, Chenyuan

论文摘要

由细菌趋化性和多种物种在异质环境中的生态相互作用的动机,我们研究了在运输和反应术语中存在空间异质性的情况下,在存在空间异质性的情况下,一般的一维反应 - 扩散系统。在适当的渐近假设下,该域上的运输缓慢,而反应异质性的梯度并不是太尖锐,我们研究了系统在没有运输的情况下近似系统近似稳态的稳定性。使用WKB ANSATZ,我们发现这种稳态可以在域的子集中发生Turing型不稳定性,从而导致局部模式的形成。模式形成区域的边界是通过“局部”图灵条件渐近给出的,该条件对应于空间变量参数的空间均匀分析。我们开发了一种通用的开源代码,该代码可免费获得,并在Schnakenberg跨扩散系统,Keller-Segel趋化趋化模型和具有异质性参数的Shnakenberg跨扩散系统,Keller-Segel趋化趋化模型以及Shigesada-Kawasaki-Teramoto模型中显示了这种局部模式形成的数值示例。我们从数值上表明,模式可能会导致峰值时空运动的次要不稳定性,尽管这些模式仍然大约在渐近预测的局部区域内。该理论可以优雅地区分由于背景异质性而引起的空间结构,这是与图灵型不稳定性出现的空间模式。

Motivated by bacterial chemotaxis and multi-species ecological interactions in heterogeneous environments, we study a general one-dimensional reaction-cross-diffusion system in the presence of spatial heterogeneity in both transport and reaction terms. Under a suitable asymptotic assumption that the transport is slow over the domain, while gradients in the reaction heterogeneity are not too sharp, we study the stability of a heterogeneous steady state approximated by the system in the absence of transport. Using a WKB ansatz, we find that this steady state can undergo a Turing-type instability in subsets of the domain, leading to the formation of localized patterns. The boundaries of the pattern-forming regions are given asymptotically by `local' Turing conditions corresponding to a spatially homogeneous analysis parameterized by the spatial variable. We developed a general open-source code which is freely available, and show numerical examples of this localized pattern formation in a Schnakenberg cross-diffusion system, a Keller-Segel chemotaxis model, and the Shigesada-Kawasaki-Teramoto model with heterogeneous parameters. We numerically show that the patterns may undergo secondary instabilities leading to spatiotemporal movement of spikes, though these remain approximately within the asymptotically predicted localized regions. This theory can elegantly differentiate between spatial structure due to background heterogeneity, from spatial patterns emergent from Turing-type instabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源