论文标题
巨大射电星系的伴形中等温度
An intergalactic medium temperature from a giant radio galaxy
论文作者
论文摘要
热热的层间培养基(温暖的IgM或异想天开)遍及宇宙网的细丝,并携带着宇宙重的一半的重子。众所周知,异想天开的热力学特性很难测量。在这里,我们使用一种新方法估算了一个星系组 - 边界温度。特别是,我们使用由NGC 6185创建的巨型射电星系(Giant RG或GRG)的无线电图像,这是一个巨大的附近螺旋形。我们使用贝叶斯3D Lobe模型分析了这个非凡的对象,并推断出均衡压力$ P_ \ Mathrm {eq} = 6 \ cdot 10^{ - 16} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ mathrm {pa} $使用Fanaroff-Riley II RGS的基于X射线的统计转换,我们找到了一个真正的Lobe压力$ p = 1.5 \ setack {+1.7 \\ - 0.4} \ cdot 10^{ - 15} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ mathrm {pa} $。宇宙Web重建,组目录和MHD模拟还意味着$ \ mathrm {MPC} $ - 比例IGM密度$ 1 +δ_\ Mathrm {igm} = 40 \ setack { + seltack {+30 \ \ \ \ \ \ \ 10} $。浮力上升的叶在其内侧被IGM粉碎,其中IgM和Lobe压力之间发生了近似平衡:$ P_ \ MATHRM {IgM} \ of of P $。然后,理想的气体定律建议IgM温度$ T_ \ MATHRM {IGM} = 11 \替代{+12 \\ - 5} \ CDOT 10^6 \ \ \ \ \ \ \ \ \ \ \ Mathrm {k} $,或$ k_ \ k_ \ Mathrm {b} t_ \ Mathrm {b} \ Mathrm {kev} $,处于病毒半径 - 与类似大型组的X射线衍生的温度一致。有趣的是,该方法不是在其极限上执行的:原则上,估计$ t_ \ mathrm {igm} \ sim 4 \ cdot 10^6 \ \ mathrm {k} $已经是可能的 - 与可用的最低X射线测量值匹配。该技术的未来范围从Galaxy Group郊区延伸到一时兴起。总之,我们证明,宇宙网络丝中GRG的观察最终足够敏感,可以探测星系群及以后的热力学。
The warm-hot intergalactic medium (warm-hot IGM, or WHIM) pervades the filaments of the Cosmic Web and harbours half of the Universe's baryons. The WHIM's thermodynamic properties are notoriously hard to measure. Here we estimate a galaxy group - WHIM boundary temperature using a new method. In particular, we use a radio image of the giant radio galaxy (giant RG, or GRG) created by NGC 6185, a massive nearby spiral. We analyse this extraordinary object with a Bayesian 3D lobe model and deduce an equipartition pressure $P_\mathrm{eq} = 6 \cdot 10^{-16}\ \mathrm{Pa}$ -- among the lowest found in RGs yet. Using an X-ray-based statistical conversion for Fanaroff-Riley II RGs, we find a true lobe pressure $P = 1.5\substack{+1.7\\-0.4}\cdot 10^{-15}\ \mathrm{Pa}$. Cosmic Web reconstructions, group catalogues, and MHD simulations furthermore imply an $\mathrm{Mpc}$-scale IGM density $1 + δ_\mathrm{IGM} = 40\substack{+30\\-10}$. The buoyantly rising lobes are crushed by the IGM at their inner side, where an approximate balance between IGM and lobe pressure occurs: $P_\mathrm{IGM} \approx P$. The ideal gas law then suggests an IGM temperature $T_\mathrm{IGM} = 11\substack{+12\\-5} \cdot 10^6\ \mathrm{K}$, or $k_\mathrm{B}T_\mathrm{IGM} = 0.9\substack{+1.0\\-0.4}\ \mathrm{keV}$, at the virial radius -- consistent with X-ray-derived temperatures of similarly massive groups. Interestingly, the method is not performing at its limit: in principle, estimates $T_\mathrm{IGM} \sim 4 \cdot 10^6\ \mathrm{K}$ are already possible -- rivalling the lowest X-ray measurements available. The technique's future scope extends from galaxy group outskirts to the WHIM. In conclusion, we demonstrate that observations of GRGs in Cosmic Web filaments are finally sensitive enough to probe the thermodynamics of galaxy groups and beyond.