论文标题
来自固定几何等异形曲线的扭转的多项式边界
Polynomial bounds on torsion from a fixed geometric isogeny class of elliptic curves
论文作者
论文摘要
我们表明,来自固定几何学等级类别的椭圆曲线的扭转中存在多项式边界。更确切地说,对于椭圆曲线$ e_0 $,在数字字段$ f_0 $上定义,对于每个$ε> 0 $存在常数$c_ε:= c_is(e_0,f_0),c_is:= c_is:= c_is(e_0,f_0,f_0)> 0 $ 0 $,以至于$ e _ $ e_ 0 $ e(f)$具有订单点$ n $,然后\ [n \ leq c_is \ cdot [f:\ mathbb {q}]^{1/2+ε},\ \],一个人也具有\ [\#e(e(f) [f:\ mathbb {q}]^{1+ε}。 \]
We show there exist polynomial bounds on torsion of elliptic curves which come from a fixed geometric isogeny class. More precisely, for an elliptic curve $E_0$ defined over a number field $F_0$, for each $ε>0$ there exist constants $c_ε:=c_ε(E_0,F_0),C_ε:=C_ε(E_0,F_0)>0$ such that for any elliptic curve $E_{/F}$ geometrically isogenous to $E_0$, if $E(F)$ has a point of order $N$ then \[ N\leq c_ε\cdot [F:\mathbb{Q}]^{1/2+ε}, \] and one also has \[ \# E(F)[\textrm{tors}] \leq C_ε\cdot [F:\mathbb{Q}]^{1+ε}. \]