论文标题
超导处理器中的图形顶点的非亚伯辫
Non-Abelian braiding of graph vertices in a superconducting processor
论文作者
论文摘要
粒子的不可区分性是量子力学的基本原理。对于迄今为止观察到的所有基本和准颗粒(包括费米子,玻色子和阿贝里安人),该原理保证了相同颗粒的编织使系统不变。但是,在两个空间维度中,存在一个有趣的可能性:非亚伯式的辫子在拓扑退化的波形空间中引起旋转。因此,它可以改变系统的可观察物,而不会违反难以区分的原则。尽管对非亚伯人的数学描述有很好的发展描述和许多理论建议,但对其交换统计数据的实验性观察数十年来一直难以捉摸。量子处理器上产生的可控多体量子状态为探索这些基本现象提供了另一种途径。尽管对常规固态平台的努力通常涉及准粒子的哈密顿动力学,但超导量子处理器可以直接通过单一大门直接操纵多体波函数。在预测稳定器代码可以托管投影性的非亚伯式伊斯林的基础上,我们实施了广义稳定器代码和统一协议来创建和编织它们。这使我们能够实验验证Anyons的融合规则,并编织它们以实现其统计数据。然后,我们研究使用Anyons进行量子计算的前景,并利用编织来创建编码三个逻辑量子的人的纠缠状态。我们的工作提供了有关非亚伯辫子的新见解,并且 - 通过将来的误差校正以实现拓扑保护,我们可以打开通往容忍缺陷量的量子计算的道路。
Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing.