论文标题
整个地图和树状自动机的迭代单构成组
Iterated Monodromy Groups of Entire Maps and Dendroid Automata
论文作者
论文摘要
本文讨论了用于先验功能的迭代单构小组。我们表明,对于每一个有限的整个超验功能,都可以通过一种特殊形式的有界活性自动机描述,称为“ dendroid automata”。特别是,我们得出的结论是,在单肌组是时,且仅当单型组是时,尤其是在单个后有限的整个功能的迭代单构型组。
This paper discusses iterated monodromy groups for transcendental functions. We show that for every post-singularly finite entire transcendental function, the iterated monodromy action can be described by bounded activity automata of a special form, called "dendroid automata". In particular, we conclude that the iterated monodromy group of a post-singularly finite entire function is amenable if and only if the monodromy group is.