论文标题
无分段的直接IRIS定位网络
Segmentation-free Direct Iris Localization Networks
论文作者
论文摘要
本文提出了一种有效的虹膜定位方法,而无需使用虹膜分割和圆拟合。常规虹膜定位方法首先使用语义分割方法(例如U-NET)提取虹膜区域。之后,使用传统圆拟合算法将内部和外虹膜圆圈定位。但是,这种方法需要用于虹膜细分的高分辨率编码器网络,因此它会导致计算成本高。此外,传统的圆拟合倾向于对输入图像和拟合参数中的噪声敏感,从而导致虹膜识别性能很差。为了解决这些问题,我们提出了一个虹膜定位网络(ILN),该网络可以直接将瞳孔和虹膜圆圈定位在低分辨率虹膜图像中的眼睑点。我们还引入了一个学生改进网络(PRN),以提高学生定位的准确性。实验结果表明,ILN和PRN在CPU上的IRIS图像中的34.5毫秒中起作用,其本地化性能的表现优于常规的IRIS分割方法。此外,广义评估结果表明,所提出的方法比其他分割方法具有更高的数据集的鲁棒性。此外,我们还确认提出的ILN和PRN提高了虹膜识别精度。
This paper proposes an efficient iris localization method without using iris segmentation and circle fitting. Conventional iris localization methods first extract iris regions by using semantic segmentation methods such as U-Net. Afterward, the inner and outer iris circles are localized using the traditional circle fitting algorithm. However, this approach requires high-resolution encoder-decoder networks for iris segmentation, so it causes computational costs to be high. In addition, traditional circle fitting tends to be sensitive to noise in input images and fitting parameters, causing the iris recognition performance to be poor. To solve these problems, we propose an iris localization network (ILN), that can directly localize pupil and iris circles with eyelid points from a low-resolution iris image. We also introduce a pupil refinement network (PRN) to improve the accuracy of pupil localization. Experimental results show that the combination of ILN and PRN works in 34.5 ms for one iris image on a CPU, and its localization performance outperforms conventional iris segmentation methods. In addition, generalized evaluation results show that the proposed method has higher robustness for datasets in different domain than other segmentation methods. Furthermore, we also confirm that the proposed ILN and PRN improve the iris recognition accuracy.