论文标题
在有限温度下测量纠缠的现实协议
Realistic protocol to measure entanglement at finite temperatures
论文作者
论文摘要
希望将多体系统的纠缠与可测量的可观察物联系起来。在具有保守电荷的系统中,最近显示,数量纠缠熵(NEE) - 即由于非选择性子系统电荷测量而引起的熵变化 - 是纠缠单调的。在这里,我们得出了NEE的Renyi矩与多点电荷相关性之间的有限温度平衡关系。这些关系在量子点系统中被举例说明,可以通过附近的量子点接触来测量所需的电荷相关性。在最近意识到多渠道临界效应的量子点中,我们表明NEE具有非平凡的通用温度依赖性,现在可以使用所提出的方法访问该效应。
It is desirable to relate entanglement of many-body systems to measurable observables. In systems with a conserved charge, it was recently shown that the number entanglement entropy (NEE) - i.e. the entropy change due to an unselective subsystem charge measurement - is an entanglement monotone. Here we derive finite-temperature equilibrium relations between Renyi moments of the NEE, and multi-point charge correlations. These relations are exemplified in quantum dot systems where the desired charge correlations can be measured via a nearby quantum point contact. In quantum dots recently realizing the multi-channel Kondo effect we show that the NEE has a nontrivial universal temperature dependence which is now accessible using the proposed methods.