论文标题

整页公正学习排名

Whole Page Unbiased Learning to Rank

论文作者

Mao, Haitao, Zou, Lixin, Zheng, Yujia, Tang, Jiliang, Chu, Xiaokai, Zhao, Jiashu, Wang, Qian, Yin, Dawei

论文摘要

信息检索系统中的页面演示偏见,尤其是在点击行为上,是一个众所周知的挑战,它阻碍了通过隐式用户反馈来改善排名模型的性能。然后,提出了公正的学习来排名〜(ULTR)算法,以学习具有偏见的点击数据的公正排名模型。但是,大多数现有的算法都是专门设计的,以减轻与位置相关的偏见,例如信任偏见,而无需考虑搜索结果页面中其他功能引起的偏见(SERP),例如多媒体引起的有吸引力的偏见。不幸的是,这些偏见在工业系统中广泛存在,并可能导致搜索体验不足。因此,我们引入了一个新问题,即排名全页的无偏学习(WP-ultr),旨在处理同时由整页SERP功能引起的偏见。它提出了巨大的挑战:(1)很难找到合适的用户行为模型(用户行为假设); (2)现有算法无法处理复杂的偏见。为了应对上述挑战,我们提出了一个偏见不可知的全页公正学习,以对算法进行排名,以自动找到具有因果发现的用户行为模型,并减轻由多个SERP功能引起的偏见,没有特定的设计。现实世界数据集的实验结果验证了BAL的有效性。

The page presentation biases in the information retrieval system, especially on the click behavior, is a well-known challenge that hinders improving ranking models' performance with implicit user feedback. Unbiased Learning to Rank~(ULTR) algorithms are then proposed to learn an unbiased ranking model with biased click data. However, most existing algorithms are specifically designed to mitigate position-related bias, e.g., trust bias, without considering biases induced by other features in search result page presentation(SERP), e.g. attractive bias induced by the multimedia. Unfortunately, those biases widely exist in industrial systems and may lead to an unsatisfactory search experience. Therefore, we introduce a new problem, i.e., whole-page Unbiased Learning to Rank(WP-ULTR), aiming to handle biases induced by whole-page SERP features simultaneously. It presents tremendous challenges: (1) a suitable user behavior model (user behavior hypothesis) can be hard to find; and (2) complex biases cannot be handled by existing algorithms. To address the above challenges, we propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, named BAL, to automatically find the user behavior model with causal discovery and mitigate the biases induced by multiple SERP features with no specific design. Experimental results on a real-world dataset verify the effectiveness of the BAL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源