论文标题

UNINL:通过统一的邻里学习对准表示学习与OOD检测的评分函数

UniNL: Aligning Representation Learning with Scoring Function for OOD Detection via Unified Neighborhood Learning

论文作者

Mou, Yutao, Wang, Pei, He, Keqing, Wu, Yanan, Wang, Jingang, Wu, Wei, Xu, Weiran

论文摘要

从用户查询中检测室外(OOD)意图对于避免在以任务为导向的对话系统中进行错误操作至关重要。关键挑战是如何区分内域(IND)和OOD意图。先前的方法忽略表示学习和评分函数之间的对齐,从而限制了OOD检测性能。在本文中,我们提出了一个统一的邻里学习框架(UNINL)来检测OOD意图。具体而言,我们设计了一个最近的邻居对比学习(KNCL)目标,以实现表示学习,并引入基于KNN的评分功能以进行OOD检测。我们的目标是使表示能力与评分功能保持一致。两个基准数据集的实验和分析显示了我们方法的有效性。

Detecting out-of-domain (OOD) intents from user queries is essential for avoiding wrong operations in task-oriented dialogue systems. The key challenge is how to distinguish in-domain (IND) and OOD intents. Previous methods ignore the alignment between representation learning and scoring function, limiting the OOD detection performance. In this paper, we propose a unified neighborhood learning framework (UniNL) to detect OOD intents. Specifically, we design a K-nearest neighbor contrastive learning (KNCL) objective for representation learning and introduce a KNN-based scoring function for OOD detection. We aim to align representation learning with scoring function. Experiments and analysis on two benchmark datasets show the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源