论文标题

通过隐式层集合增强自然语言理解中的分布外检测

Enhancing Out-of-Distribution Detection in Natural Language Understanding via Implicit Layer Ensemble

论文作者

Cho, Hyunsoo, Park, Choonghyun, Kang, Jaewook, Yoo, Kang Min, Kim, Taeuk, Lee, Sang-goo

论文摘要

分布(OOD)检测旨在辨别出预期数据分布的异常值,这对于保持高可靠性和良好的用户体验至关重要。 OOD检测的最新研究利用来自倒数第二层的单个表示的信息来确定输入是否是异常的。尽管这种方法很简单,但中间层中各种信息的潜力被忽略了。在本文中,我们提出了一个基于对比度学习的新型框架,该框架鼓励中级特征学习图层特殊的表示形式,并将它们隐含地组装成单个表示形式,以吸收预先训练的语言模型中的丰富信息。各种意图分类和OOD数据集进行的广泛实验表明,我们的方法比其他作品更有效。

Out-of-distribution (OOD) detection aims to discern outliers from the intended data distribution, which is crucial to maintaining high reliability and a good user experience. Most recent studies in OOD detection utilize the information from a single representation that resides in the penultimate layer to determine whether the input is anomalous or not. Although such a method is straightforward, the potential of diverse information in the intermediate layers is overlooked. In this paper, we propose a novel framework based on contrastive learning that encourages intermediate features to learn layer-specialized representations and assembles them implicitly into a single representation to absorb rich information in the pre-trained language model. Extensive experiments in various intent classification and OOD datasets demonstrate that our approach is significantly more effective than other works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源