论文标题
虹膜识别的超分辨率和图像重新投影
Super-Resolution and Image Re-projection for Iris Recognition
论文作者
论文摘要
最近的一些作品探讨了深度学习以最多样化的目的披露丰富,等级和歧视性模型的能力。特别是在超分辨率领域,使用不同深度学习方法的卷积神经网络(CNN)试图从低分辨率图像中恢复现实的纹理和细性细节。在这项工作中,我们探讨了虹膜识别环境中虹膜超分辨率(SR)的这些方法的生存能力。为此,我们测试了有或没有所谓的图像重新投影的不同体系结构,以减少将其应用于不同IRIS数据库的伪像,以验证不同CNN对IRIS超级分辨率的可行性。结果表明,使用完整的不同训练数据库成功地执行转移学习,CNN和图像重新投影可以专门为识别系统的准确性提高结果。
Several recent works have addressed the ability of deep learning to disclose rich, hierarchical and discriminative models for the most diverse purposes. Specifically in the super-resolution field, Convolutional Neural Networks (CNNs) using different deep learning approaches attempt to recover realistic texture and fine grained details from low resolution images. In this work we explore the viability of these approaches for iris Super-Resolution (SR) in an iris recognition environment. For this, we test different architectures with and without a so called image re-projection to reduce artifacts applying it to different iris databases to verify the viability of the different CNNs for iris super-resolution. Results show that CNNs and image re-projection can improve the results specially for the accuracy of recognition systems using a complete different training database performing the transfer learning successfully.