论文标题

用于聚类联合学习的改进算法

An Improved Algorithm for Clustered Federated Learning

论文作者

Harshvardhan, Ghosh, Avishek, Mazumdar, Arya

论文摘要

在本文中,我们通过聚类框架解决了异质模型与联邦学习(FL)的同时培训之间的二分法。我们根据用户的(最佳)本地模型为FL定义了一个新的聚类模型:如果其本地模型接近,则两个用户属于同一集群;否则它们属于不同的群集。在\ cite {ghosh_effficity_2021}中提出了一种用于聚类FL的标准算法,称为\ texttt {ifca},它需要\ emph {fimph {fimph {fimpph {fimpph {fimpph {formph {formph {formph {ifca},而超参数的知识通常很难在实用应用中获得crespluters的数量(通常很困难)来转换。我们提出了一种改进的算法,\ emph {连续的改进联合聚类算法}(\ texttttt {sr-fca}),它消除了这种限制性假设。 \ texttt {sr-fca}将每个用户视为单顿群集作为初始化,然后通过利用属于同一群集的相似用户来依次完善群集估计。在任何中间步骤中,\ texttt {sr-fca}在每个集群中使用强大的联合学习算法来利用同时训练并纠正聚类错误。此外,在理论和实践中,\ texttt {sr-fca}不需要任何\ emph {良好}初始化(温暖的开始)。我们表明,通过正确选择学习率,\ texttt {sr-fca}会导致任意小的聚类错误。此外,我们验证了在神经网等非convex问题中验证算法在标准FL数据集上的性能,并且我们显示了\ texttt {sr-fca}对基准的好处。

In this paper, we address the dichotomy between heterogeneous models and simultaneous training in Federated Learning (FL) via a clustering framework. We define a new clustering model for FL based on the (optimal) local models of the users: two users belong to the same cluster if their local models are close; otherwise they belong to different clusters. A standard algorithm for clustered FL is proposed in \cite{ghosh_efficient_2021}, called \texttt{IFCA}, which requires \emph{suitable} initialization and the knowledge of hyper-parameters like the number of clusters (which is often quite difficult to obtain in practical applications) to converge. We propose an improved algorithm, \emph{Successive Refine Federated Clustering Algorithm} (\texttt{SR-FCA}), which removes such restrictive assumptions. \texttt{SR-FCA} treats each user as a singleton cluster as an initialization, and then successively refine the cluster estimation via exploiting similar users belonging to the same cluster. In any intermediate step, \texttt{SR-FCA} uses a robust federated learning algorithm within each cluster to exploit simultaneous training and to correct clustering errors. Furthermore, \texttt{SR-FCA} does not require any \emph{good} initialization (warm start), both in theory and practice. We show that with proper choice of learning rate, \texttt{SR-FCA} incurs arbitrarily small clustering error. Additionally, we validate the performance of our algorithm on standard FL datasets in non-convex problems like neural nets, and we show the benefits of \texttt{SR-FCA} over baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源