论文标题

两阶段随机匹配和定价与乘坐的应用

Two-stage Stochastic Matching and Pricing with Applications to Ride Hailing

论文作者

Feng, Yiding, Niazadeh, Rad, Saberi, Amin

论文摘要

匹配和定价是在双面市场中的两个关键杠杆,以连接需求和供应。该平台可以通过批处需求请求来产生更有效的匹配和定价决策。我们启动对两阶段随机匹配问题的研究,无论有没有定价,都可以使平台在批处理中做出改进的决策,并着眼于即将来临的未来需求请求。该问题的一部分是由在线市场(例如乘车平台)中的应用程序进行的。 我们设计了在线竞争算法,用于顶点加权(或未加权)的两阶段随机匹配,以最大化供应效率,以及两阶段的关节匹配和定价,以最大程度地提高市场效率。在前一种问题中,使用应用于``平衡''凸面程序的家族的随机原始二线算法,我们获得了最佳的$ 3/4 $竞争比与最佳离线基准。使用一个因素揭示程序和连接到suppodular优化,我们将该比率与最佳的在线基准测试提高到$(1-1/e+1/e^2)\大约0.767 $,而加权案例的$ 0.761 $。在后一个问题中,我们通过从前先知不平等文献中借用想法来设计最佳$ 1/2 $竞争的关节定价和匹配算法。我们还展示了使用子解多功能的相关差距的特殊情况的特殊情况案例的$(1-1/e)$ - 竞争算法。最后,我们通过将DIDI共享数据集用于成都市的理论研究,并在实际实例中评估我们提议的算法的性能。

Matching and pricing are two critical levers in two-sided marketplaces to connect demand and supply. The platform can produce more efficient matching and pricing decisions by batching the demand requests. We initiate the study of the two-stage stochastic matching problem, with or without pricing, to enable the platform to make improved decisions in a batch with an eye toward the imminent future demand requests. This problem is motivated in part by applications in online marketplaces such as ride hailing platforms. We design online competitive algorithms for vertex-weighted (or unweighted) two-stage stochastic matching for maximizing supply efficiency, and two-stage joint matching and pricing for maximizing market efficiency. In the former problem, using a randomized primal-dual algorithm applied to a family of ``balancing'' convex programs, we obtain the optimal $3/4$ competitive ratio against the optimum offline benchmark. Using a factor revealing program and connections to submodular optimization, we improve this ratio against the optimum online benchmark to $(1-1/e+1/e^2)\approx 0.767$ for the unweighted and $0.761$ for the weighted case. In the latter problem, we design optimal $1/2$-competitive joint pricing and matching algorithm by borrowing ideas from the ex-ante prophet inequality literature. We also show an improved $(1-1/e)$-competitive algorithm for the special case of demand efficiency objective using the correlation gap of submodular functions. Finally, we complement our theoretical study by using DiDi's ride-sharing dataset for Chengdu city and numerically evaluating the performance of our proposed algorithms in practical instances of this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源